4.7 Article

Self-gravitating magnetized tori around black holes in general relativity

期刊

PHYSICAL REVIEW D
卷 99, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.99.104063

关键词

-

资金

  1. Polish National Science Centre [2017/26/A/ST2/00530]
  2. Spanish MINECO [AYA2015-66899-C2-1-P]
  3. European Union [FunFiCO-777740]
  4. PHAROS, COST Action [CA16214]
  5. LOEWE-Program in HIC for FAIR

向作者/读者索取更多资源

We investigate stationary, self-gravitating, magnetized disks (or tori) around black holes. The models are obtained by numerically solving the coupled system of the Einstein equations and the equations of ideal general-relativistic magnetohydrodynamics. The mathematical formulation and numerical aspects of our approach are similar to those reported in previous works modeling stationary self-gravitating perfect-fluid tori, but the inclusion of magnetic fields represents a new ingredient. Following previous studies of purely hydrodynamical configurations, we construct our models assuming Keplerian rotation in the disks and both spinning and spinless black holes. We focus on the case of a toroidal distribution of the magnetic field and build a large set of models corresponding to a wide range of values of the magnetization parameter, starting with weakly magnetized disks and ending at configurations in which the magnetic pressure dominates over the thermal one. In all our models, the magnetic field affects the equilibrium structure of the torus mainly due to the magnetic pressure. In particular, an increasing contribution of the magnetic field shifts the location of the maximum of the rest-mass density towards inner regions of the disk. The total mass of the system and the angular momentum are affected by the magnetic field in a complex way, that depends on the black hole spin and the location of the inner radius of the disk. The nonlinear dynamical stability analysis of the solutions presented in this paper will be reported elsewhere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据