4.8 Article

A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range

期刊

NANOSCALE
卷 11, 期 20, 页码 9949-9957

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr00488b

关键词

-

资金

  1. National Natural Science Foundation of China [51702084, 31600753]
  2. Natural Science Foundation of Hebei Province [E2018202179]

向作者/读者索取更多资源

Flexible and multifunctional strain sensors with superior properties including high sensitivity, low detection limits, and a wide sensing range are always in high demand for wearable electronics. However, it remains a big challenge to fully satisfy the aforementioned requirements. In particular, there is always a trade-off between high sensitivity and wide sensing range. Here, we developed a multifunctional strain sensor based on a network-structured MXene/polyurethane mat (network-M/P mat) and well balanced the relationship between the sensitivity and sensing range by rationally designing the morphology and microstructures of the sensing device. The network-structured polyurethane mat (network-P mat) was fabricated through a facile and scalable electrospinning technique. The highly conductive MXene sheets were decorated onto the network-P mat through hydrogen bonding or electrostatic interactions. The obtained highly flexible and stretchable network-M/P mat exhibited a superior comprehensive sensing performance that was characterized by high sensitivity (gauge factor up to 228), a low limit of detection (0.1%), a large and tunable sensing range (up to 150%), excellent stability (over 3200 cycles), and multiple functions (lateral strain, vertical pressure, bending and subtle vibration). Based on its superior performance, the network-M/P mat-based strain sensor can detect a full range of body actions and subtle physiological signals (e.g. respirations and pulse waves), demonstrating great potential for applications in artificial electronic skin and wearable health detectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据