4.6 Article

Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters

期刊

PHYSICAL REVIEW B
卷 99, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.205134

关键词

-

资金

  1. European Commission under the Graphene Flagship [CNECTICT-604391]
  2. UK STFC [ST/P004423/1]
  3. STFC [ST/P004423/1] Funding Source: UKRI

向作者/读者索取更多资源

We analyze a description of twisted graphene bilayers that incorporates the deformation of the layers using state-of-the-art interlayer atomic potentials and a modification of the hopping parameters between layers in the light of the classic Slonczewski-Weiss-McClure parametrization. We obtain narrow bands in all cases, but their nature can be rather different. We will show how to describe the results by equivalent continuum models. Even though such models can be constructed, their complexity can vary, requiring many coupling parameters to be included, and the full in-layer dispersion must be taken into account. The combination of all these effects will have a large impact on the wave functions of the flat bands, and modifications in details of the underlying models can lead to significant changes. A robust conclusion is that the natural strength of the interlayer couplings is higher than usually assumed, leading to shifts in the definition of the magic angles. The structure at the edges of the narrow bands, at the Gamma point of the Brillouin zone is also strongly dependent on parametrization. As a result, the existence, and size, of band gaps between the flat bands and the neighboring ones are changed. Hence, the definition of Wannier functions, and descriptions based on local interactions are strongly dependent on the description of the model at the atomic scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据