4.7 Article

Li-Salt-Free, Coevaporated Cu(TFSI)2-Doped Hole Conductors for Efficient CH3NH3PbI3 Perovskite Solar Cells

期刊

ACS APPLIED ENERGY MATERIALS
卷 2, 期 5, 页码 3469-3478

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.9b00260

关键词

doped hole conductors; coevaporation; copper-salt dopants; perovskite solar cells; controlled doping; CH3NH3PbI3; Cu(TFSI)(2)

资金

  1. SIEMENS AG, Munich
  2. Bavarian state ministry for education science and the arts under SolTech project
  3. German research council (DFG) [Th 807/6-1, SFB 840]

向作者/读者索取更多资源

In n-i-p-type conventional perovskite solar cells (PSCs) using a doped 2,2',7,7'-tetrakis (N,N'-di-p-methoxyphenylamine)-9,9'-spirofluorene (spiro-OMeTAD) hole transport layer (HTL), the issues of reproducibility and stability are closely associated with the redox-inactive additives lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) and 4-tert-butylpyridine (tBP). Instead of these additives, copper(II) di[bis(trifluoromethylsulfonyl)imide] (Cu(TFSI)(2)) is demonstrated as a direct and efficient p-dopant for spiro-OMeTAD. With the adoption of the technologically relevant coevaporation technique, highly uniform, pinhole-free doped HTLs are achieved with controlled amounts of Cu(TFSI)(2) and are spectroscopically and electrically characterized. Using these highly conducting doped HTLs, CH3NH3PbI3-based planar PSCs are realized, which exhibit high photoconversion efficiency (>13% with merely 4 mol % dopant) and excellent reproducibility. Also, by taking advantage of the coevaporation technique, the Cu(TFSI)(2)-doped HTL thickness impact on PSCs is investigated. It is observed that devices with even the thinnest (40 nm) HTL perform very similarly to the ones with a 100 nm thick HTL, which opens up cost-effective preparation strategies. Moreover, a remarkable storage stability over 218 days is observed for devices with a coevaporated Cu(TFSI)(2)-doped HTL, suggesting that this approach of controlled direct doping is a viable alternative to the existing arbitrarily p-doped HTL in perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据