4.7 Article

The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 425, 期 -, 页码 105-119

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2015.05.045

关键词

climate; volcanism; greenhouse; icehouse; erosion; uplift

资金

  1. Frontiers of Earth System Dynamics program through the United States National Science Foundation [OCE-1338842]
  2. Directorate For Geosciences
  3. Division Of Ocean Sciences [1338842] Funding Source: National Science Foundation
  4. Division Of Earth Sciences
  5. Directorate For Geosciences [1019636] Funding Source: National Science Foundation

向作者/读者索取更多资源

Continental arcs, such as the modern Andes or the Cretaceous Sierra Nevada batholith, are some of the highest topographic features on Earth. Continental arc volcanoes may produce more CO2 than most other types of volcanoes due to the interaction of magmas with sedimentary carbonates stored in the continental upper plate. As such, global flare-ups in continental arc magmatism may amplify atmospheric CO2 concentrations, leading to climatic warming. However, the high elevations of continental arcs may also enhance orographic precipitation and change global atmospheric circulation patterns, possibly increasing the efficiency of chemical weathering and drawdown of atmospheric CO2, which may subdue the climatic warming response to volcanic activity. To better evaluate the climatic response, we develop models that integrate magmatic crustal thickening, topographic uplift, isostasy and erosion. The topographic response is used to predict how soil formation rates, soil residence times, and chemical weathering rates vary during and after a magmatic episode. Although magmatism leads to crustal thickening, which requires topographic uplift, highest elevations peak 10 My after magmatism ends. Relatively high elevations, which enhance erosion and chemical weathering of the continental arc, persist for tens of million years after magmatism ends, depending on erosion kinetics. It has recently been suggested that the Cretaceous-Paleogene greenhouse (high atmospheric CO2 and warm climate) coincided with a global chain of continental arcs, whereas mid- to late Cenozoic icehouse conditions (low atmospheric CO2 and cold climate) coincided with a lull in continental arc activity after 50 Ma. Application of our models to the Sierra Nevada (California, USA) continental arc, which represents a segment of this global Cretaceous-Paleogene continental arc, reproduces the observed topographic and erosional response. Our models require that the newly formed continental arc crust remained high and continued to erode and weather well after (>50 My) the end of magmatism. Thus, in the aftermath of a global continental arc flare-up, both the total volcanic inputs of CO2 decline and the average weatherability of continents increases, the latter due to the increased proportion of widespread remnant topography available for weathering and erosion. This combination leads to a decrease in the long-term baseline of carbon in the ocean/atmosphere system, leading to cooling. Mid-Cenozoic cooling is often attributed solely to increased weathering rates associated with India-Eurasian collision and the Himalayan orogeny. However, the total area of now-extinct Cretaceous-Paleogene continental arcs is 1.3-2 times larger than that of the Himalayan range front and the Tibetan plateau combined, suggesting that weathering of these remnant volcanic arcs may also play a role in drawing down CO2 through silicate weathering and subsequent carbonate burial. In summary, if global continental arc flare-ups lead to greenhouse conditions, long-lived icehouse conditions should follow in the aftermath due to decreased CO2 inputs and an increase in regional weathering efficiency of remnant arc topography. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据