4.2 Article

REDOX Responsive Fluorescence Active Glycopolymer Based Nanogel: A Potential Material for Targeted Anticancer Drug Delivery

期刊

ACS APPLIED BIO MATERIALS
卷 2, 期 6, 页码 2587-2599

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.9b00267

关键词

glycopolymer; REDOX responsive; fluorescence active; nanogel; anticancer activity

资金

  1. Department of Biotechnology, IIT Kharagpur
  2. UGC, New Delhi

向作者/读者索取更多资源

A well-defined glycopolymer based fluorescence active nanogel has been prepared via the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and Diels-Alder (DA) click chemistry. To prepare the nanogel, initially, a functional AB block copolymer (BCP) poly(pentafluorophenyl acrylate)-b-poly(furfuryl methacrylate) (PPFPA-b-PFMA), having activated pentafluorophenyl ester group, was synthesized via RAFT polymerization. The activated pentafluorophenyl functionality was replaced by the amine functionality of glucosamine to introduce the amphiphilic BCP poly[2-(acrylamido) glucopyranose]-b-poly(furfuryl methacrylate) (PAG-b-PFMA). Further-more, the terminal acid (-COOH) functionality of the RAFT agent was modified by gelatin QDs (GQDs) to generate fluorescence active glycopolymer. An anticancer drug, Doxorubicin, was loaded in the micelle via the successive addition of the drug molecule and cross-linking using dithio-bismaleimidoethane (DTME), a REDOX responsive cross-linker. The anticancer activity of the drug loaded nanogel was observed over MBA-MD-231, human breast cancer cell line, and monitored via fluorescence spectroscopy and flow cytometric analyses (FACS). The cytotoxicity of the prepared glycopolymer based nanogel over the MBA-MD-231 cell line was assessed via MTT assay test, and it was observed that the synthesized nanogel was noncytotoxic in nature.YYY

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据