4.6 Review

Computational Modeling of Nanoparticle Coalescence

期刊

ADVANCED THEORY AND SIMULATIONS
卷 2, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adts.201900013

关键词

atomistic simulation; coalescence; molecular dynamics; nanoparticles; sintering

资金

  1. Okinawa Institute of Science and Technology Graduate University

向作者/读者索取更多资源

The coalescence of nanoclusters fabricated in the gas phase is a fundamental growth mechanism determining cluster shapes, sizes, compositions, and structures, with resultant effects on practically all of their physical and chemical properties. Furthermore, coalescence can affect properties of larger structures that consist of nanoparticles as their elementary building blocks, such as the fractal dimension of cluster aggregates and the porosity and conductance of thin films. Therefore, it comes as no surprise that a great body of research, both experimental and theoretical, has focused on nanoparticle coalescence over the course of the past few decades. This review attempts to summarize the most important recent results from computational studies on nanoparticle coalescence and draw parallels between theoretical and experimental findings. The approach used here aspires to explain nanoparticle coalescence within the framework of a single intuitive narrative by integrating previous results obtained using various methods by the authors and others. Simultaneously, it is discussed where understanding and controlling (i.e., enhancing or inhibiting) nanoparticle coalescence can have great technological interest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据