4.6 Article

Unraveling Photocatalytic Mechanism and Selectivity in PET-RAFT Polymerization

期刊

ADVANCED THEORY AND SIMULATIONS
卷 2, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adts.201900038

关键词

catalyst selectivity; molecular orbital analyses; pheophorbide a; photoinduced electron/energy transfer; reversible addition-fragmentation chain transfer; reversible addition-fragmentation chain transfer agents

向作者/读者索取更多资源

The photoredox catalysts pheophorbide a (PheoA) and zinc tetraphenylporphine (ZnTPP) under illumination display strong selectivity toward reversible addition-fragmentation chain transfer (RAFT) agents containing thiocarbonylthio groups, namely dithiobenzoates, xanthates, and trithiocarbonates. The underlying mechanism for the process-whether via energy or electron transfer from the photoexcited catalyst to RAFT agent-has remained unclear, as has the reason for the remarkable selectivity. Quantum chemistry and molecular dynamics calculations are utilized to provide strong evidence that none of the common energy-transfer mechanisms (Forster resonance energy transfer; Dexter electron exchange; or internal conversion followed by vibrational energy transfer) are likely to facilitate polymerization, let alone explain the observed selectivities. In contrast, extensive quantum chemical characterizations of the excited-state orbitals associated with the catalyst-RAFT agent complexes uncover a clear selectivity pattern associated with charge-transfer states that is highly consistent with experimental findings. The results shed light on the intrinsic catalytic role of the photocatalysts and provide a strong indication that a reversible electron/charge-transfer mechanism underpins the remarkable photocatalytic selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据