4.6 Article

Synthesis of bimetallic-organic framework Cu/Co-BTC and the improved performance of thiophene adsorption

期刊

RSC ADVANCES
卷 9, 期 27, 页码 15642-15647

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra02372k

关键词

-

资金

  1. Natural Science Foundation of China - Liaoning United Funds [U1508205]
  2. Fundamental Research Funds for the Central Universities [DUT15ZD113]
  3. Key Laboratory of Applied Surface and Colloid Chemistry (Shanxi Normal University)

向作者/读者索取更多资源

A bimetallic-organic porous material (Cu/Co-BTC) with a paddle-wheel structure has been successfully synthesized by a solvothermal approach. The as-synthesized materials were characterized by XRD, SEM, ICP-AES, UV-Vis, TGA and N-2 adsorption at 77 K. The prepared Cu/Co-BTC samples were investigated in thiophene (TP) adsorption from model gasolines by the fixed bed adsorption method at 298 K. The results showed that only a small amount of Co could be successfully introduced into the framework of HKUST-1, and the introduction of Co had little effect on the crystalline structure, morphology, porosity, and thermal stability. The bimetallic Cu/Co-BTC with a Cu/Co ratio of 174 displayed significantly improved adsorption desulfurization performance, showing an increase in breakthrough volume by 30% compared with HKUST-1, implying that the central metal in the MOF plays an important role in adsorption desulfurization. The addition of toluene or cyclohexene (3.20-3.30 vol%) as a competitor in the model gasoline led to a decline in desulfurization performance, especially when cyclohexene was added. The bimetallic Cu/Co-BTC showed a slight loss in breakthrough volume by only 5% after regenerating 7 times, displaying an excellent regeneration property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据