4.6 Article

Electronic localization in CaVO3 films via bandwidth control

期刊

NPJ QUANTUM MATERIALS
卷 4, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41535-019-0146-3

关键词

-

资金

  1. Swiss National Science Foundation through the NCCR MARVEL
  2. Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH)
  3. European Community's Seventh Framework Programme (FP7/20072013) [290605]
  4. Dysenos AG by Kabelwerke Brugg AG Holding
  5. Fachhochschule Nordwestschweiz
  6. Paul Scherrer Institut
  7. Swiss National Science Foundation Early Postdoc Mobility fellowship [P2FRP2-171824]
  8. Swiss National Science Foundation within the D-A-CH programme (SNSF Research Grant) [200021L 141325]

向作者/读者索取更多资源

Understanding and controlling the electronic structure of thin layers of quantum materials is a crucial first step towards designing heterostructures where new phases and phenomena, including the metal-insulator transition (MIT), emerge. Here, we demonstrate control of the MIT via tuning electronic bandwidth and local site environment through selection of the number of atomic layers deposited. We take CaVO3, a correlated metal in its bulk form that has only a single electron in its V4+ 3d manifold, as a representative example. We find that thick films and ultrathin films (<= 6 unit cells, u.c.) are metallic and insulating, respectively, while a 10 u.c. CaVO3 film exhibits a clear thermal MIT. Our combined X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) study reveals that the thickness-induced MIT is triggered by electronic bandwidth reduction and local moment formation from V3+ ions, that are both a consequence of the thickness confinement. The thermal MIT in our 10 u.c. CaVO3 film exhibits similar changes in the RIXS response to that of the thickness-induced MIT in terms of reduction of bandwidth and V 3d-O 2p hybridization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据