3.8 Proceedings Paper

A Compiler for Automatic Selection of Suitable Processing-in-Memory Instructions

出版社

IEEE
DOI: 10.23919/date.2019.8714956

关键词

Compiler; Processing in Memory; Near-data computing; Vector instructions; SIMD; 3D-Stacked memories

资金

  1. CAPES [001]
  2. CNPq
  3. FAPERGS

向作者/读者索取更多资源

Although not a new technique, due to the advent of 3D-stacked technologies, the integration of large memories and logic circuitry able to compute large amount of data has revived the Processing-in-Memory (PIM) techniques. PIM is a technique to increase performance while reducing energy consumption when dealing with large amounts of data. Despite several designs of PIM are available in the literature, their effective implementation still burdens the programmer. Also, various PIM instances are required to take advantage of the internal 3D-stacked memories, which further increases the challenges faced by the programmers. In this way, this work presents the Processing-In-Memory cOmpiler (PRIMO). Our compiler is able to efficiently exploit large vector units on a PIM architecture, directly from the original code. PRIMO is able to automatically select suitable PIM operations, allowing its automatic offloading. Moreover, PRIMO concerns about several PIM instances, selecting the most suitable instance while reduces internal communication between different PIM units. The compilation results of different benchmarks depict how PRIMO is able to exploit large vectors, while achieving a near-optimal performance when compared to the ideal execution for the case study PIM. PRIMO allows a speedup of 38x for specific kernels, while on average achieves 11.8x for a set of benchmarks from PolyBench Suite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据