4.5 Article

Simulation of atomic layer deposition on nanoparticle agglomerates

期刊

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/1.4968548

关键词

-

资金

  1. NanoNextNL, a micro and nanotechnology consortium of the government of the Netherlands

向作者/读者索取更多资源

Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating process. In order to study this influence, the authors have developed a novel computational modeling approach which incorporates (1) fully resolved agglomerates; (2) a self-limiting ALD half cycle reaction; and (3) gas diffusion in the rarefied regime modeled by direct simulation Monte Carlo. In the computational model, a preconstructed fractal agglomerate of up to 2048 spherical particles is exposed to precursor molecules that are introduced from the boundaries of the computational domain and react with the particle surfaces until these are fully saturated. With the computational model, the overall coating time for the nanoparticle agglomerate has been studied as a function of pressure, fractal dimension, and agglomerate size. Starting from the Gordon model for ALD coating within a cylindrical hole or trench [Gordon et al., Chem. Vap. Deposition 9, 73 (2003)], the authors also developed an analytic model for ALD coating of nanoparticles in fractal agglomerates. The predicted coating times from this analytic model agree well with the results from the computational model for D-f = 2.5. The analytic model predicts that realistic agglomerates of O(10(9)) nanoparticles require coating times that are 3-4 orders of magnitude larger than for a single particle. (C) 2016 American Vacuum Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据