4.7 Article

Classical nonrelativistic effective field theory and the role of gravitational interactions

期刊

PHYSICAL REVIEW D
卷 99, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.99.123503

关键词

-

资金

  1. Zuckerman STEM Leadership Program

向作者/读者索取更多资源

Coherent oscillation of axions or axionlike particles may give rise to long-lived clumps, called axion stars, because of the attractive gravitational force or its self-interaction. Such a kind of configuration has been extensively studied in the context of oscillons without the effect of gravity, and its stability can be understood by an approximate conservation of particle number in a nonrelativistic effective field theory (EFT). We extend this analysis to the case with gravity to clarify the EFT expansion scheme in terms of gradient energy and Newton's constant. Our EFT is useful to calculate the axion star configuration and its classical lifetime without any ad hoc assumption. In addition, we derive a simple stability condition against perturbations in the case of self-gravitating objects. Finally, we discuss the consistency of other nonrelativistic effective field theories proposed in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据