4.8 Review

X-ray-activated nanosystems for theranostic applications

期刊

CHEMICAL SOCIETY REVIEWS
卷 48, 期 11, 页码 3073-3101

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cs00921j

关键词

-

资金

  1. National Natural Science Foundation of China [U1505221, 21635002, 21874024]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT15R11]
  3. Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering
  4. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [ZIAEB000073] Funding Source: NIH RePORTER

向作者/读者索取更多资源

X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据