4.2 Article

Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow

期刊

JOURNAL OF TURBULENCE
卷 18, 期 8, 页码 717-759

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14685248.2017.1319951

关键词

Drag reduction; riblets; direct numerical simulations

资金

  1. European Union [614034]
  2. Netherlands Organisation for Scientific Research (NWO) [SH-023-15]

向作者/读者索取更多资源

A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength (f). The aim is to quantify the drag change for this texture as compared to a smooth wall and to study the underlying mechanisms. To that purpose, direct numerical simulations of turbulent flow in a channel with height L-z were performed. The Fukagata-Iwamoto-Kasagi identity for drag decomposition was extended to textured walls and was used to study the drag change mechanisms. For (f)/L-z O(10), the herringbone texture behaves similarly to a conventional parallel-riblet texture in yaw: the suppression of turbulent advective transport results in a slight drag reduction of 2%. For (f)/L-z less than or similar to O(1), the drag increases strongly with a maximum of 73%. This is attributed to enhanced mean and turbulent advection, which results from the strong secondary flow that forms over regions of riblet convergence/divergence. Hence, the employment of convergent/divergent riblets in the texture seems to be detrimental to turbulent drag reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据