4.2 Article

Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls

期刊

JOURNAL OF TURBULENCE
卷 18, 期 6, 页码 569-588

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14685248.2017.1311017

关键词

Shock wave/turbulent boundary layer interaction; wall temperature; turbulence structure; shock motion; dynamic mode decomposition

资金

  1. National Key Research and Development Program of China [2016YFA0401200]
  2. National Natural Science Foundation of China [91441103, 11472278, 11372330]
  3. Science Challenge Project [JCKY2016212A501]

向作者/读者索取更多资源

Direct numerical simulations of shock wave and supersonic turbulent boundary layer interaction in a 24 degrees compression ramp with adiabatic and cold-wall temperatures are conducted. The wall temperature effects on turbulence structures and shock motions are investigated. The results are validated against previous experimental and numerical data. The effects of wall cooling on boundary layer characteristics are analysed. Statistical data show that wall cooling has a significant effect on the logarithmic region of mean velocity profile downstream the interaction region. Moreover, the influence of wall temperature on Reynolds stress anisotropy is mainly limited in the near-wall region and has little change on the outer layer. As the wall temperature decreases, the streamwise coherency of streaks increases. Based on the analysis of instantaneous Lamb vector divergence, the momentum transport between small-scale vortices on cold-wall condition is significantly enhanced. In addition, spectral analysis of wall pressure signals indicates that the location of peak of low-frequency energy shifts toward higher frequencies in cold case. Furthermore, the dynamic mode decomposition results reveal two characteristic modes, namely a low-frequency mode exhibiting the breathing motion of separation bubble and a high-frequency mode associated with the propagation of instability waves above separation bubble. The shape of dynamic modes is not sensitive to wall temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据