4.7 Article

Aerosol pH and its driving factors in Beijing

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 19, 期 12, 页码 7939-7954

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-19-7939-2019

关键词

-

资金

  1. National Natural Science Foundation of China [41675131]
  2. Beijing Talents Fund [2014000021223ZK49]
  3. Beijing Natural Science Foundation [8131003]

向作者/读者索取更多资源

Aerosol acidity plays a key role in secondary aerosol formation. The high-temporal-resolution PM2.5 pH and size-resolved aerosol pH in Beijing were calculated with ISORROPIA II. In 2016-2017, the mean PM2.5 pH (at relative humidity (RH) > 30 %) over four seasons was 4.5 +/- 0.7 (winter) > 4.4 +/- 1.2 (spring) > 4.3 +/- 0.8 (autumn) > 3.8 +/- 1.2 (summer), showing moderate acidity. In coarse-mode aerosols, Ca2+ played an important role in aerosol pH. Under heavily polluted conditions, more secondary ions accumulated in the coarse mode, leading to the acidity of the coarse-mode aerosols shifting from neutral to weakly acidic. Sensitivity tests also demonstrated the significant contribution of crustal ions to PM2.5 pH. In the North China Plain (NCP), the common driving factors affecting PM2.5 pH variation in all four seasons were SO42-, TNH3 (total ammonium (gas + aerosol)), and temperature, while unique factors were Ca2+ in spring and RH in summer. The decreasing SO42- and increasing NO3- mass fractions in PM2.5 as well as excessive NH3 in the atmosphere in the NCP in recent years are the reasons why aerosol acidity in China is lower than that in Europe and the United States. The nonlinear relationship between PM2.5 pH and TNH3 indicated that although NH3 in the NCP was abundant, the PM2.5 pH was still acidic because of the thermodynamic equilibrium between NH(4)( )(+)and NH3. To reduce nitrate by controlling ammonia, the amount of ammonia must be greatly reduced below excessive quantities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据