4.7 Article

Exercise in claudicants increase or decrease walking ability and the response relates to mitochondrial function

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12967-017-1232-6

关键词

Intermittent claudication; Exercise; Mitochondria; Preconditioning; Ischemia reperfusion injury

资金

  1. Liaison Committee

向作者/读者索取更多资源

Background: Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Methods: Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Results: Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)(P) (p = 0.004), complex I (CI + ETF)(P) (p = 0.003), complex I + complex II (CI + CII + ETF)(P) (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)(P) (p = 0.0013), complex I (CI + ETF)(P) (p = 0.0005), complex I + complex II (CI + CII + ETF) P (p = 0.011) and electron transfer system capacity (CI + CII + ETF)(E) (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Conclusions: Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据