4.2 Article

Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15287394.2017.1314840

关键词

-

资金

  1. CREATE-REACT of the Natural Sciences and Engineering Research Council of Canada
  2. Canada Research Chair Program

向作者/读者索取更多资源

Polycyclic aromatic compounds (PAC) are ubiquitous environmental pollutants originating from incomplete combustion processes. While the toxicity of parent PAC such as benzo[a]pyrene (BaP) is well characterized, effects of other alkyl-PAC dibenzothiophene (DBT) and retene (Ret) are not well established. The aim of this study was to examine the underlying relative neurotoxic mechanisms attributed to BaP (parent PAH), DBT and Ret (alkyl-PACs) using human neuroblastoma SK-N-SH cells. The lethal concentrations (LC10 and LC20) were found at approximately 10 mu M and 40 mu M, respectively after 24-h exposure of SK-N-SH cells. It was hypothesized that PAC trigger reactive oxygen species (ROS) production, leading to activation of apoptotic signaling pathways. Differentiated neuronal cells were treated with three compounds at (0.5-40 mu M) for 24 h. There was a significant concentration-dependent increase in levels of ROS, even at sub-lethal levels of 1 mu M Ret. The mitochondrial membrane potential (MMP) was significantly decreased. Real-time RT-PCR results showed up-regulation of pro-apoptotic genes and down-regulation of antioxidative genes expression in BaP-, DBT-, and Ret-treated SK-N-SH cells. Cytochrome c protein levels and lipid peroxidation (LPO) were also significantly elevated in a concentration-related manner. Data demonstrated that BaP-, DBT-, or Ret-induced neuronal cell damage involved oxidative stress generation through mitochondria-mediated apoptosis pathway. Alkyl-PAC also exhibited higher potency in ROS induction and reduction of MMP than parent PAC. These findings may be important for environmental risk assessment attributed to exposure to PAC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据