4.6 Article

Emerging investigator series: protein adsorption and transformation on catalytic and food-grade TiO2 nanoparticles in the presence of dissolved organic carbon

期刊

ENVIRONMENTAL SCIENCE-NANO
卷 6, 期 6, 页码 1688-1703

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9en00130a

关键词

-

资金

  1. University of Notre Dame
  2. National Science Foundation [CBET 1705770]

向作者/读者索取更多资源

The inherent physicochemical properties of engineered nanomaterials (ENMs) are known to control the sorption of proteins, but knowledge on how the release of ENMs to the environment prior to protein exposure affects this reaction is limited. In this study, time-resolved, in situ infrared spectroscopy was used to investigate the sorption of a model protein, bovine serum albumin (BSA), onto two different types of titanium dioxide (TiO2) ENMs (catalytic-grade P90 and food-grade E171) in the presence and absence of a simple dissolved organic carbon molecule, oxalate. Infrared spectroscopy results showed that oxalate adsorbed to P90 through chemisorption interactions, but it adsorbed to E171 through physisorption interactions due to the presence of inherent surface-bound phosphates. Secondary structure and two-dimensional correlation spectroscopy analyses showed that BSA interacted with and unfolded on the surface of P90, but not E171, presumably due to the repulsive forces from the negatively charged phosphates on E171. When oxalate was pre-adsorbed to either P90 or E171, the unfolding of BSA occurred, but along different pathways. This suggests both the outer surface chemistry (e.g., oxalate layers) and the mechanism by which this layer is bound to the ENM play a significant role in the adsorption of proteins. Collectively, the results indicate the exposure of ENMs to natural and engineered environments prior to biological uptake affects the resulting protein corona formation, and thus the transport and bioactivity of ENMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据