4.7 Article

QTCP: Adaptive Congestion Control with Reinforcement Learning

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TNSE.2018.2835758

关键词

Reinforcement learning; TCP congestion control; function approximation; dynamic generalization; Kanerva coding

向作者/读者索取更多资源

Next generation network access technologies and Internet applications have increased the challenge of providing satisfactory quality of experience for users with traditional congestion control protocols. Efforts on optimizing the performance of TCP by modifying the core congestion control method depending on specific network architectures or apps do not generalize well under a wide range of network scenarios. This limitation arises from the rule-based design principle, where the performance is linked to a pre-decided mapping between the observed state of the network to the corresponding actions. Therefore, these protocols are unable to adapt their behavior in new environments or learn from experience for better performance. We address this problem by integrating a reinforcement-based Q-learning framework with TCP design in our approach called QTCP. QTCP enables senders to gradually learn the optimal congestion control policy in an on-line manner. QTCP does not need hard-coded rules, and can therefore generalize to a variety of different networking scenarios. Moreover, we develop a generalized Kanerva coding function approximation algorithm, which reduces the computation complexity of value functions and the searchable size of the state space. We show that QTCP outperforms the traditional rule-based TCP by providing 59.5 percent higher throughput while maintaining low transmission latency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据