4.6 Article

Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing

期刊

IEEE ACCESS
卷 7, 期 -, 页码 70901-70909

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2919000

关键词

Biosensors; lab-on-a-chip (LoC); microfluidics; surface acoustic wave (SAW)

资金

  1. PAR FAS 2007-2013 GLIOMICS'' of Regione Toscana''

向作者/读者索取更多资源

Many approaches to diagnostic testing remain decades old. Well-established biosensing technologies (e.g., enzyme-linked immunosorbent assays and radio-immunoassays) typically cannot fulfill the requirements of portability and ease of use necessary for point-of-care purposes. Several alternatives have been proposed (e.g., quartz-crystal-microbalances, electrochemical sensors, cantilevers, and surface-plasmon-resonance sensors) but often lack high performance or still necessitate bulk ancillary instruments to operate. Here we present a highly sensitive, versatile, and easily integrable microfluidic lab-on-a-chip (LoC) for biosensing, fully based on surface acoustic waves (SAWs). By using ultra-high-frequency resonator-biosensors, we show that it is possible to perform highly sensitive assays in complex media. This all-electrical readout platform is benchmarked with the biotin-streptavidin binding in presence of non-specific binding proteins (serum albumin) at physiological concentration. The benchmark experiments were performed with the idea of mimicking a biological fluid, in which other molecular species at high concentration are present together with the analytes. We demonstrate that this LoC can detect sub-nanomolar concentrations of analytes in complex media. As a comparison with similar acoustic-wave-based systems, this full-SAW platform outperforms the standard commercial gravimetric sensors (i.e., quartz-crystal-microbalances) and the more common Love-SAW biosensors. This full-SAW LoC could be further developed for the detection of biomarkers in biological fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据