4.7 Article

Benchmark Rovibrational Linelists and Einstein A-coefficients for the Primordial Molecules and Isotopologues

期刊

ASTROPHYSICAL JOURNAL
卷 878, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab1f65

关键词

astrochemistry; molecular data; molecular processes

资金

  1. CAPES
  2. Polish National Science Centre [DEC-2013/10/E/ST4/00033]
  3. CNPq

向作者/读者索取更多资源

Complete benchmark rovibrational energy linelists calculated for the primordial polar molecules of the universe, namely HD+, HD, and the HeH+ isotopologues, with accuracy up to 10(-2) cm(-1) for low-lying states, are presented. To allow for these calculations to be performed, new high-accuracy potential energy curves, which include the diagonal Born-Oppenheimer adiabatic corrections and the leading relativistic corrections, are determined. Also, a new approach for calculating non-adiabatic corrections involving an effective vibrational nuclear mass obtained based on the atoms-in-molecules theory is employed. The vibrational and rotational masses are taken as being different and dependent on the nuclear distance. Accurate dipole moment curves are calculated and used to generate lists of Einstein A-coefficients. The energy linelists and the sets of Einstein A-coefficients for HD are upgrades of previous calculations including quasibound states, while for HD+ and HeH+ and its isotopologues the present results represent significant improvement over the previous calculations. The results obtained here suggest that, with the inclusion of the non-adiabatic corrections, the accuracy limit at least for low-lying states might have been reached. Thus, further progress should involve accounting for even smaller effects such as the quantum-electrodynamics corrections. The present results represent the state-of-the-art of theoretical spectroscopy of the primordial polar molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据