4.6 Article

Degradation of Proton Exchange Membrane (PEM) Water Electrolysis Cells: Looking Beyond the Cell Voltage Increase

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 166, 期 10, 页码 F645-F652

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1451910jes

关键词

-

资金

  1. FederalMinistry of Education and Research of Germany [03SF0536B]

向作者/读者索取更多资源

The degradation of proton exchange membrane water electrolysis cells is usually measured in a temporal increase of the cell voltage. Although this is sufficient to evaluate the stability of a system, it is less suitable for targeted material development. Thus, an overpotential-specific and temporally resolved electrochemical characterization protocol is proposed. In this the ohmic overpotential is determined with high frequency resistance measurements. These are also used in combination with polarization curves to distinguish between the kinetic and mass transport overpotentials and to determine kinetic key parameters, according to the Butler-Volmer and transition state theory. Complementary electrochemical impedance spectroscopy measurements further unravel the individual resistances. On this basis, the following statements can already be issued. The major share of the measured cell voltage increase, i.e. degradation, is of apparent nature as it is recovered once lower potentials are applied. It is suggested that this is due to changes in the oxidation states of the iridium-based catalyst. Real degradation occurs in the ohmic and mass transport overpotential mainly at higher current densities and longer operating times. The increasing kinetic overpotential with increasing operating time is primarily potential-driven. Interestingly, both the Tafel slope and the apparent exchange current density slightly increase over time. (c) The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据