4.6 Article

Cost-effective approach to detect Cu(II) and Hg(II) by integrating a smartphone with the colorimetric response from a NBD-benzimidazole based dyad

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 22, 页码 11839-11845

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp00002j

关键词

-

资金

  1. DST-SERB National postdoctoral fellowship [PDF/2016/000804]

向作者/读者索取更多资源

A new optical chemosensor N1 was designed and synthesized by condensing 4-chloro-7-nitrobenzofurazan with 2-aminophenylbenzimidazole. In CH3OH : H2O (1 : 1, v/v) medium, sensor N1 exhibited high selectivity and sensitivity towards Cu2+ and Hg2+ ions by showing a distinct colour change from pale yellow to pink due to the internal charge transfer occurring between the sensor N1 and the Cu2+/Hg2+ ions upon complexation in 1 : 1 stoichiometry. Also, the binding of Cu2+ and Hg2+ ions with N1 resulted in new absorption bands at 540 nm and 375 nm with the concurrent disappearance of the sensor absorption bands at 485 nm and 321 nm. Using the spectral changes of N1, the concentrations of Cu2+ and Hg2+ ions can be detected down to 1.23 x 10(-7) M and 4.70 x 10(-7) M, respectively. Further, the colour change of N1 in the presence of Cu2+/Hg2+ ions was integrated with a smartphone colour-scanning app to measure the red-green-blue (RGB) colour intensity, and a cost-effective method was developed for the on-site detection of Cu2+/Hg2+ ions. Finally, the practicability of sensor N1 to quantify Cu2+ and Hg2+ ions in real water samples was successfully validated by using both the UV-vis spectrophotometer and the smartphone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据