4.6 Article

An excellent OER electrocatalyst of cubic SrCoO3- prepared by a simple F-doping strategy

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 20, 页码 12538-12546

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta03099a

关键词

-

资金

  1. Natural Science Foundation of China [51872276]
  2. National Key Research and Development Program of China [2016YFA0401004]
  3. External Cooperation Program of BIC, Chinese Academy of Sciences [211134KYSB20130017]
  4. Hefei Science Center CAS [2016HSC-IU004]
  5. Fundamental Research Funds for the Central Universities [WK3430000004]

向作者/读者索取更多资源

Driven by the increasing global energy demand, the development of innovative energy conversion and storage systems is becoming more and more urgent. As one of the attractive means, water splitting has attracted widespread attention because of its great potential in storing electricity in the form of chemical fuel which also makes it a promising solution to the utilization of non-grid electricity generated by solar or wind. The oxygen evolution reaction (OER) is generally deemed as the key rate-limiting step of water splitting, and thus studying efficient OER electrocatalysts with a low overpotential and good stability is of vital importance. Here, we successfully prepared an OER catalyst with excellent electrochemical performance through a simple anion doping. Firstly, a stable cubic perovskite SrCoO3- was prepared by anion F-doping instead of traditional A and/or B site doping. Secondly, SrCoO2.85-F0.15 demonstrates excellent OER activity superior to its parent hexagonal compound H-Sr2Co2O5 and those perovskites prepared via complicated A- and/or B-site doping. DFT calculations and XPS investigations reveal that the cubic structure and the highly oxidative oxygen species (O-2(2-)/O-) via F- doping jointly contribute to the better OER properties of SrCoO2.85-F0.15. Our work brings forth a promising strategy to stabilize cubic structures from hexagonal ones via a simple anion doping strategy, which may open a new avenue for the development of even more effective OER catalysts and may be applied in many other fields related to structure transformation, in addition to energy and catalysis fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据