4.4 Article

A mathematical model of reward and executive circuitry in obsessive compulsive disorder

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 414, 期 -, 页码 165-175

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2016.11.025

关键词

Brain connectivity; Dynamical system; Computational modeling; Obsessive compulsive disorder

资金

  1. State University of New York at New Paltz Research Scholarship
  2. Creative Activities program

向作者/读者索取更多资源

The neuronal circuit that controls obsessive and compulsive behaviors involves a complex network of brain regions (some with known involvement in reward processing). Among these are cortical regions, the striatum and the thalamus (which compose the CSTC pathway), limbic areas such as the amygdala and the hippocampus, as well as dopamine pathways. Abnormal dynamic behavior in this brain network is a hallmark feature of patients with increased anxiety and motor activity, like the ones affected by OCD. There is currently no clear understanding of precisely what mechanisms generate these behaviors. We attempt to investigate a collection of connectivity hypotheses of OCD by means of a computational model of the brain circuitry that governs reward and motion execution. Mathematically, we use methods from ordinary differential equations and continuous time dynamical systems. We use classical analytical methods as well as computational approaches to study phenomena in the phase plane (e.g., behavior of the system's solutions when given certain initial conditions) and in the parameter space (e.g., sensitive dependence of initial conditions). We find that different obsessive-compulsive subtypes may correspond to different abnormalities in the network connectivity profiles. We suggest that it is a combination of parameters (connectivity strengths between regions), rather than the value of any one parameter taken independently, that provide the best basis for predicting behavior, and for understanding the heterogeneity of the illness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据