4.6 Article

Experimental Study of LoRa Modulation Immunity to Doppler Effect in CubeSat Radio Communications

期刊

IEEE ACCESS
卷 7, 期 -, 页码 75721-75731

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2919274

关键词

CubeSat radio communication; Doppler effect; laboratory testing; LoRa modulation; multipath propagation; outdoor experiments

资金

  1. Ministry of Science and Higher Education of the Russian Federation [RFMEFI57517X0154]

向作者/读者索取更多资源

Currently, LoRa technology is one of the most promising technologies in satellite Internet of Things. Particularly those based on satellite constellations in low Earth orbit, including the CubeSat nanosatellite constellations. However, the LoRa specification does not contain clear criteria for the applicability of the LoRa modulation under strong Doppler effect conditions caused by the very high speed of satellites. This is especially true in the case of the dynamic Doppler effect when the Doppler frequency shift changes rapidly with time. This paper presents the results of laboratory testing and outdoor experiments conducted to determine the feasibility of the LoRa modulation in CubeSat radio communication systems. Additionally, possible restrictions associated with the Doppler effect were explored. The experiments showed that the LoRa modulation has very high immunity to the Doppler effect. This immunity allows for the use of LoRa modulation in satellite radio communications in orbits above 550 km without any restrictions associated with the Doppler effect. In lower orbits, the dynamic Doppler effect leads to the destruction of the satellite-to-Earth radio channel when using the LoRa modulation mode with a maximum spreading factor of SF = 12. This destruction occurs when the satellite is flying directly above the ground station, resulting in reduced duration of the radio communication session. The reduction in the duration of a communication session increases with decreasing orbit altitude and reaches about one minute in an ultra-low orbit 200 km high.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据