4.7 Article

Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil

期刊

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
卷 97, 期 11, 页码 3665-3674

出版社

WILEY
DOI: 10.1002/jsfa.8226

关键词

alkaline soil; organic manure; soil biological properties; nutrient availability

资金

  1. NPST, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia [12-ENV2917-02]

向作者/读者索取更多资源

BACKGROUND: Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg(-1)), cow manure (CM; added at 50 g kg(-1)) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability tomaize plants were also investigated. RESULTS: Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. treatments. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. CONCLUSIONS: Applying PG with microbial inoculation improved macronutrient uptake and plant growth. (C) 2017 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据