4.4 Article

Efficient simulation of multimodal nonlinear propagation in step-index fibers

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.34.002266

关键词

-

类别

向作者/读者索取更多资源

A numerical approach to nonlinear propagation in waveguides based on real-space Gaussian quadrature integration of the nonlinear polarization during propagation is investigated and compared with the more conventional approach based on expressing the nonlinear polarization by a sum of mode overlap integrals. Using the step-index fiber geometry as an example, it is shown that the Gaussian quadrature approach scales linearly or at most quadratically with the number of guided modes and that it can account for mode profile dispersion without additional computational overhead. These properties make it superior for multimode nonlinear simulations extending over wide frequency ranges. (C) 2017 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据