4.7 Review

Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics

期刊

LAB ON A CHIP
卷 19, 期 14, 页码 2296-2314

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9lc00211a

关键词

-

资金

  1. European Research Council BioProbe-PIT [727761]
  2. European Research Council (ERC) [727761] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Gas bubbles are almost a routine occurrence encountered by researchers working in the field of microfluidics. The spontaneous and unexpected nature of gas bubbles represents a major challenge for experimentalists and a stumbling block for the translation of microfluidic concepts to commercial products. This is a startling example of successful scientific results in the field overshadowing the practical hurdles of day-to-day usage. We however believe such hurdles can be overcome with a sound understanding of the underlying conditions that lead to bubble formation. In this tutorial, we focus on the two main conditions that result in bubble nucleation: surface nuclei and gas supersaturation in liquids. Key theoretical concepts such as Henry's law, Laplace pressure, the role of surface properties, nanobubbles and surfactants are presented along with a view of practical implementations that serve as preventive and curative measures. These considerations include not only microfluidic chip design and bubble traps but also often-overlooked conditions that regulate bubble formation, such as gas saturation under pressure or temperature gradients. Scenarios involving electrolysis, laser and acoustic cavitation or T-junction/co-flow geometries are also explored to provide the reader with a broader understanding on the topic. Interestingly, despite their often-disruptive nature, gas bubbles have also been cleverly utilized for certain practical applications, which we briefly review. We hope this tutorial will provide a reference guide in helping to deal with a familiar foe, the bubble.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据