4.6 Article

One-step synthesis of Fe2O3 nano-rod modified reduced graphene oxide composites for effective Cr(vi) removal: removal capability and mechanism

期刊

RSC ADVANCES
卷 9, 期 36, 页码 20582-20592

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra01892a

关键词

-

资金

  1. Key technology and project of Jinan water environment control [201509002]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07202002]

向作者/读者索取更多资源

Reduced graphene oxide (rGO) supported Fe2O3 nanorod composites were prepared via a one-step hydrothermal method and further utilized for hexavalent chromium (Cr(vi)) removal from aqueous environments. The composite material exhibited an excellent removal efficiency for chromium (47.28 mg L-1), which was attributed to the electrostatic attraction and chemical reduction of chromium by the material. The removal mechanism was studied by SEM, BET, XPS, and FTIR. The results demonstrated that rGO was successfully modified by Fe2O3 nanorods (approximately 50 nm wide). Compared with graphene oxide (GO), the compound was much more easily separated from the solution after completing the removal. Furthermore, XPS characterization showed that Cr(vi) could also be reduced to low-toxicity Cr(iii) by hydroxyl groups. In the variables test, it was found that the removal process was pH-dependent. The results of the designed experiments for exploring the adsorption kinetics, isotherms and thermodynamics indicated that the removal process obeyed a pseudo-second-order kinetics model, Langmuir isotherm model and that it was a spontaneous exothermal process. This study provides the possibility of hydrothermal synthesis of Fe2O3/rGO for use as an excellent material to remove Cr(vi) from aqueous environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据