4.7 Article

Preparation of dense SiHf(B)CN-based ceramic nanocomposites via rapid spark plasma sintering

期刊

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
卷 37, 期 16, 页码 5157-5165

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jeurceramsoc.2017.04.066

关键词

High-temperature stable ceramics; nanocomposites; SiHfBCN; Rapid sintering; Mechanical properties; High-temperature oxidation

资金

  1. China Scholarship Council (CSC)
  2. European Commission through the Marie-Curie ITN project Functional Nitrides for Energy Applications, FUNEA [FP7-PITN-GA-2010-264873]
  3. MSIP (Ministry of Science, ICT and Future Planning)
  4. NST (National Research Council of Science & Technology) of Republic of Korea [CMIP-13-4-KIMS]
  5. European Network (SIPs, EU COST Action) [CM 1302]

向作者/读者索取更多资源

Dense SiHf(B)CN-based ceramic nanocomposites were prepared by spark plasma sintering (SPS) using high heating rates (similar to 450 degrees C/min.) and high pressures (>= 100 MPa). The obtained nanocomposites were investigated by X-ray diffraction, Raman spectroscopy and electron microscopy concerning their phase evolution and microstructure. The hardness and the elastic modulus of dense SiHfCN were found to be 26.8 and 367 GPa, respectively. Whereas the SiHfBCN samples exhibited a hardness of 24.6 GPa and an elastic modulus of 284 GPa. The investigation of the oxidation of the prepared dense ceramic nanocomposites at high temperature revealed that the parabolic oxidation rates of SiHfCN were comparable to those of ultra-high temperature ceramics (UHTCs, e.g. HfC-20 vol% SiC); whereas the parabolic oxidation rates of SiHfBCN were several orders of magnitude lower than those. The results obtained within this study indicate the feasibility of SPS for rapid preparation of dense though nano-scaled Hf-containing ceramic nanocomposites that are promising candidates for high-temperature applications in harsh environments. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据