4.6 Article

Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 2, 页码 A389-A399

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1111702jes

关键词

-

资金

  1. Office of Vehicle Technologies at the U.S. Department of Energy
  2. U. S. Department of Energy, Office of Basic Energy Sciences
  3. U. S. Department of EnergyOffice of Science laboratory [DE-AC02-06CH11357]

向作者/读者索取更多资源

Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages >= 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs, Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. We estimate that each Mn-II ion deposited in the SEI causes trapping of similar to 10(2) additional Li+ ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail. (C) The Author(s) 2017. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据