4.6 Article

Mesoscopic Modeling of a LiFePO4 Electrode: Experimental Validation under Continuous and Intermittent Operating Conditions

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 11, 页码 E3040-E3053

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0211706jes

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-170912]
  2. General Motors Co.
  3. Auto Partnerships Canada (APC) [APCPJ 395996-09]

向作者/读者索取更多资源

The previously presented mesoscopic model [Phys. Chem. Chem. Phys., 16, 22555, (2014)] for battery electrodes consisting of phase-change insertion materials is incorporated into porous-electrode theory and validated by comparing the simulation results with experimental data from continuous and intermittent galvanostatic discharge of a LiFePO4 electrode under various operating conditions. The model features mesoscopic LiFePO4 units that undergo non-equilibrium lithiation/delithiation and fast solid-state diffusion. Good agreement with the experimental data supports the validity of this model. GITT analysis suggests that the slow evolution of the electrode polarization during each pulse and the subsequent relaxation period is due to Li transport between LiFePO4 units rather than diffusion within the units. Galvanostatic pulse techniques commonly used to determine diffusivities of inserted species in solid-solution systems may also be used to estimate the equilibrium potential of individual mesoscopic units for which no actual measurement has been reported to date. Further analysis of the GITT experiments suggests an alternative pathway for the intermittent charge/discharge of LFP electrodes. Depending on the overall depth-of-discharge/charge of the electrode, relaxation time and the incremental depth-of-discharge/charge of each pulse, the solid-solution capacity available in the Li-rich/Li-poor end-member may be able to accommodate Li insertion/extraction entirely without phase transformation during each pulse. (C) The Author(s) 2017. Published by ECS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据