4.6 Article

Electrode Slurry Particle Density Mapping Using X-ray Radiography

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 2, 页码 A380-A388

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1171702jes

关键词

-

资金

  1. Laboratory Directed Research and Development (LDRD) - Berkeley Lab
  2. Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. Advanced Manufacturing Office (AMO)

向作者/读者索取更多资源

The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiOx and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed to calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors' knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution. (C) The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据