4.6 Article

Numerical Modeling of Damage Evolution Phenomenon in Solid-State Lithium-Ion Batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 12, 页码 A2573-A2589

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.1101712jes

关键词

-

资金

  1. National Science Foundation [DMR-1231048]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1231048] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper presents a finite element methodology for numerical modeling the evolution of damage in Solid-State Lithium-Ion Batteries (SSLIBs). This process is dominated by the interaction of electrochemical and mechanical phenomena in the electrode, solid-state electrolyte, and electrode/electrolyte interface. These phenomena depend on the transport process of species/ions, mechanical deformations, electrostatics, and electrochemical reactions. Damage evolution in the electrode active material, caused by diffusion-induced stresses, is described by a non-local damage model. To model the influence of the damage evolution on the ion/species transport and the electrochemical performance of the battery, the diffusivity of the electrode is coupled with the damage evolution. The impact of damage evolution on the electrochemical and mechanical responses of the SSLIB is studied by numerical examples. The results indicate that the evolution of the damage during a cyclic charge/discharge process diminishes the electrochemical and mechanical performances of the battery by reducing the transport properties, decreasing the capacity, and lessening the strength of the active material. The numerical studies further suggest that electrode particles with large aspect ratios have better performance and decrease the damage-induced capacity fade. (C) 2017 The Electrochemical Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据