4.6 Article

Pt/C/Ni(OH)2 Bi-Functional Electrocatalyst for Enhanced Hydrogen Evolution Reaction Activity under Alkaline Conditions

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 13, 页码 F1307-F1315

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0251713jes

关键词

-

资金

  1. Department of Energy Small Business Innovation Research (SBIR) program (grant Phase II.B) [DE-SC0007574]
  2. U.S. Department of Energy (DOE) [DE-SC0007574] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The kinetics of hydrogen evolution and hydrogen oxidation reactions (HER/HOR) in alkaline electrolyte on Pt/C and a Pt/C/Ni(OH)(2) bi-functional electrocatalyst were studied. The objective was to investigate the enhancement of hydrogen evolution activity of Pt in alkaline environments in presence of transition metal hydroxides, and to determine the optimum concentration of Ni(OH)(2) to be added to maximize catalytic activity. The catalysts were prepared by mixing colloidal dispersions of nanosized Ni(OH)(2) with a commercially-sourced Pt/C catalyst dispersed in water. Rotating disk electrode (RDE) measurements were performed in 0.1 M KOH at temperatures ranging from 273.15 K to 303.15 K, and the HOR/HER kinetic currents, obtained after IR and mass transport corrections, were fitted using the Butler-Volmer equation to estimate the exchange current densities at each temperature. Arrhenius plots showed very similar activation energies for Pt/C (35 +/- 6 kJ/mol) and the bi-functional catalysts (38 +/- 6 kJ/mol) -Pt/C/X% Ni(OH)(2). The maximum exchange current density (2.44 +/- 0.07 mA cm(-2) Pt at 303.15 K) was obtained with the catalyst containing 10 wt% Ni(OH)(2), and was 2.4 times higher than for Pt/C (1.03 +/- 0.07 mA cm(-2) Pt at 303.15 K). The bi-functional catalysts were evaluated in a hydroxide-exchange membrane water electrolyzer operated with ultrapure water, and outperformed Pt/C by about 0.15 V across the entire current density range. (c) The Author(s) 2017. Published by ECS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据