4.4 Article

Rossby Wave Breaking and Transient Eddy Forcing during Euro-Atlantic Circulation Regimes

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 74, 期 6, 页码 1735-1755

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS-D-16-0263.1

关键词

-

资金

  1. Department of Energy [DE-SC0012599]
  2. NSF [AGS-1338427]
  3. NOAA [NA14OAR4310160]
  4. NASA [NNX14AM19G]
  5. National Science Foundation
  6. U.S. Department of Energy (DOE) [DE-SC0012599] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The occurrence of boreal winter Rossby wave breaking (RWB) along with the quantitative role of synoptic transient eddy momentum and heat fluxes directly associated with RWB are examined during the development of Euro-Atlantic circulation regimes using ERA-Interim. Results are compared to those from seasonal reforecasts made using the Integrated Forecast System model of ECWMF coupled to the NEMO ocean model. The development of both Scandinavian blocking and the Atlantic ridge is directly coincident with anticyclonic wave breaking (AWB); however, the associated transient eddy fluxes do not contribute to (and, in fact, oppose) ridge growth, as indicated by the local Eliassen-Palm (EP) flux divergence. Evidently, other factors drive development, and it appears that wave breaking assists more with ridge decay. The growth of the North Atlantic Oscillation (NAO) in its positive phase is independent of RWB in the western Atlantic but strongly linked to AWB farther downstream. During AWB, the equatorward flux of cold air at upper levels contributes to a westerly tendency just as much as the poleward flux of momentum. The growth of the negative phase of the NAO is almost entirely related to cyclonic wave breaking (CWB), during which equatorward momentum flux dominates at jet level, yet low-level heat fluxes dominate below. The reforecasts yield realistic frequencies of CWB and AWB during different regimes, as well as realistic estimates of their roles during development. However, a slightly weaker role of RWB is simulated, generally consistent with a weaker anomalous circulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据