4.7 Article

Exact solution of generalized cooperative susceptible-infected-removed (SIR) dynamics

期刊

PHYSICAL REVIEW E
卷 100, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.100.012307

关键词

-

资金

  1. German Research Foundation (DFG) [GH 176/1-1, 345463468]

向作者/读者索取更多资源

In this paper, we introduce a general framework for coinfection as cooperative susceptible-infected-removed (SIR) dynamics. We first solve the SIR model analytically for two symmetric cooperative contagions [L. Chen et al., Europhys. Lett. 104, 50001 (2013)] and then generalize and solve the model exactly in the symmetric scenarios for three and more cooperative contagions. We calculate the transition points and order parameters, i.e., the total number of infected hosts. We show that the behavior of the system does not change qualitatively with the inclusion of more diseases. We also show analytically that there is a saddle-node-like bifurcation for two cooperative SIR dynamics and that the transition is hybrid. Moreover, we investigate where the symmetric solution is stable for initial fluctuations. We finally explore sets of parameters which give rise to asymmetric cases, namely, the asymmetric cases of primary and secondary infection rates of one pathogen with respect to another. This setting can lead to fewer infected hosts, a higher epidemic threshold, and also continuous transitions. These results open the road to a better understanding of disease ecology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据