4.6 Article

Distribution-Free Predictive Inference for Regression

期刊

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
卷 113, 期 523, 页码 1094-1111

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01621459.2017.1307116

关键词

Distribution-free; Model misspecification; Prediction band; Regression; Variable importance

资金

  1. NSF [DMS-1407771, DMS-1553884, DMS-1613202, DMS-1309174, DMS-1554123]

向作者/读者索取更多资源

We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据