4.4 Article

Effects of Manure and Tillage on Edge-of-Field Phosphorus Loss in Seasonally Frozen Landscapes

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 48, 期 4, 页码 966-977

出版社

WILEY
DOI: 10.2134/jeq2019.01.0011

关键词

-

资金

  1. University of Wisconsin Discovery Farms
  2. Discovery Farms Minnesota from the University of Wisconsin-Madison Division of Extension
  3. Dairy Farmers of Wisconsin
  4. USGS
  5. NRCS
  6. Minnesota Department of Agriculture
  7. Minnesota Corn Research and Promotion Council
  8. Minnesota Soybean Research and Promotion Council
  9. Minnesota Clean Water Land and Legacy Amendment

向作者/读者索取更多资源

Environmental conditions and management practices affect nutrient losses in surface runoff, but their relative impacts on phosphorus (P) loss during frozen and nonfrozen ground periods have not been well quantified. More specifically, the relative importance of manure application, tillage, and soil-test P (STP) has not been assessed at the field scale. In this study, we compiled a dataset composed of 125 site-years of data from 26 fields that were continually monitored for edge-of-field P loss during snowmelt and storm events. Regression tree analyses were performed to rank the level of influence each environmental and management factor had on nutrient loads. Dissolved P (DP) was the majority of the total P (TP) during frozen conditions, but a small portion of TP during nonfrozen conditions. Manure application had a greater influence on the flow-weighted mean concentrations (FWMCs) of TP and DP during frozen conditions than during nonfrozen conditions. No-till resulted in greater TP and DP FWMCs during frozen conditions than conventional tillage, whereas the opposite effect for TP FWMC was seen during nonfrozen conditions. However, regression tree analysis revealed that STP (0- to 5-cm depth) was the most important factor in predicting DP and TP FWMCs during frozen conditions and DP FWMC during nonfrozen conditions. Extremely high STP values were associated with late-frozen manure applications and grazed pastures. Reducing surface P loss in seasonally frozen landscapes will require prioritizing management strategies that avoid manure application through early-and late-frozen conditions and lead to a drawdown of STP, particularly in the top 5 cm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据