4.6 Article

Electric field influence on the helical structure of peptides: insights from DFT/PCM computations

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 29, 页码 16198-16206

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp01542f

关键词

-

资金

  1. European Regional Development Fund within the Operational Programme Science and Education for Smart Growth 2014-2020 under the Project CoE National center of mechatronics and clean technologies [BG05M2OP001-1.001-0008-C01]

向作者/读者索取更多资源

The secondary structure of proteins is of prime importance to their proper functioning and protein misfolding may cause serious disorders in the human body. Here, the electric field influence on the conformational stability of model alpha helical peptides is studied by employing density functional theory calculations combined with continuum dielectric method computations. Our results show that the basic parameters of the electric field - its strength and directionality - are determinative for the alpha helix stability. An electric field strength of 0.005 a.u. (2.5 V nm(-1)) applied along the X coordinate axis (the long axis of the helix) in the direction of the mu(x) component of the molecular dipole moment does affect the peptide conformation, destroys the helix, and leads to the formation of a cyclic-peptide-like structure. Interestingly, the process of denaturation can be reversible when the electric field is switched-off. The reversibility of the process of the electric field induced disruption of the peptide secondary structure suggests a possible mechanism for the healing of misfolded proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据