4.7 Article

Examining the Role of Anisotropic Morphology: Comparison of Free-Standing Magnetite Nanorods versus Spherical Magnetite Nanoparticles for Electrochemical Lithium-Ion Storage

期刊

ACS APPLIED ENERGY MATERIALS
卷 2, 期 7, 页码 4801-4812

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.9b00456

关键词

magnetite; nanorods; morphology; anode; Li-ion battery

资金

  1. Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]
  2. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]
  3. Knapp Chair in Energy and the Environment

向作者/读者索取更多资源

As a matter of synthetic novelty, Fe3O4 (magnetite) nanorods (NRs) have been successfully generated by using a reproducible four -step protocol, wherein goethite is initially produced, morphologically tuned, chemically treated with a passivating agent to reduce aggregation, and ultimately converted to magnetite by thermal annealing within a reductive atmosphere. Our equally important objective was in correlating electrochemical behavior with the unique morphology of these Fe3O4 anode materials. As such, both conventionally coated and binder-free electrodes were tested using as -prepared magnetite NRs and nanoparticles (NPs) with controlled crystallite size as the active materials. Our study revealed that both the NR and NP Fe3O4 materials were amenable to effective binder-free electrode design. For the conventionally coated electrodes, the NR electrodes demonstrated an improved rate capability using a sequential discharge/charge current density profile as compared with that for corresponding NP electrodes. Most significantly, within the cycling stability test, the NR electrode delivered a high and stable capacity with a superior capacity retention relative to that of the NP for more than SO cycles in half cells and 100 cycles in full cells. These data in particular showcase the undeniable benefits of the anisotropic structure of the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据