4.7 Article

Air-Stable n-i-p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material

期刊

ACS APPLIED ENERGY MATERIALS
卷 2, 期 7, 页码 4890-4899

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.9b00603

关键词

nickel oxide; inorganic hole-transporting material; n-i-p perovskite solar cells; interfaces; stability

资金

  1. Colombia Scientific Program [FP44842-218-2018]

向作者/读者索取更多资源

Development of low-cost solution processable inorganic hole-transporting materials (HTM) in n-i-p perovskite solar cells (PSCs) is still a challenge toward stable and cost-effective devices. Here, we report the synthesis, surface functionalization, and application of hydrophobic nickel oxide nanocrystals (ho-NiOx) as HTM in planar n-i-p PSCs. The morphological and electrical properties of ho-NiOx layers were evaluated by atomic force microscopy (AFM) and conductivity measurements as well as ultraviolet photoelectron spectroscopy (UPS) and surface photovoltage (SPV) measurements. Compared to the state-of-the-art Spiro-OMeTAD, our results suggested a better energy band alignment between ho-NiOx and (FAPbI(3))(0.78)(MAPbBr(3))(0.14)(CsPbI3)(0.08) perovskite. Noticeably, ho-NiOx-based devices exhibit a power conversion efficiency (PCE) of 12.71% and a stabilized power output (SPO) of 10.99%, the best performance reported so far employing NiOx as the sole top transport layer. Notably, a low photovoltage suggests that the V-oc could be enhanced by reducing possible recombination paths at the perovskite/HTM interface. Moreover, unencapsulated PSC employing ho-NiOx exhibited an outstanding stability under high moisture levels (similar to 65% RH) retaining similar to 90% of initial PCE after 1008 h of fabrication, paving the way toward scalable and solution processed fully inorganic blocking layer PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据