4.7 Article

Impact of curcumin delivery system format on bioaccessibility: nanocrystals, nanoemulsion droplets, and natural oil bodies

期刊

FOOD & FUNCTION
卷 10, 期 7, 页码 4339-4349

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8fo02510j

关键词

-

资金

  1. National Institute of Food and Agriculture, USDA, Massachusetts Agricultural Experiment Station [MAS00491]
  2. USDA, AFRI [2016-08782]

向作者/读者索取更多资源

Curcumin, a hydrophobic yellow-orange crystalline substance derived from plants, is claimed to exhibit a broad range of biological activities. Its application in functional foods and beverages is often limited by its low solubility in aqueous media, chemical instability, and low bioavailability. Previously, we have shown that curcumin can be successfully loaded into emulsions using the pH-shift method. In this study, we compared the efficacy of curcumin crystals dispersed in water (control) with three delivery systems produced using the pH-shift method: curcumin nanocrystals; curcumin-loaded nanoemulsions; and curcumin-loaded soy oil bodies. The nanoemulsions and oil bodies formed creamy yellow dispersions that were stable to creaming, whereas the nanocrystals formed a cloudy yellow-orange suspension that was prone to sedimentation. The gastrointestinal fate of the delivery systems was assessed using a static in vitro digestion model consisting of mouth, stomach, and small intestine phases. The nanoemulsions and oil bodies were rapidly and fully digested, while the nanocrystals were not. All three systems were relatively stable to chemical transformation in the in vitro digestion model. The nanocrystals gave a low bioaccessibility but the other two systems gave a high bioaccessibility, which was attributed to their ability to form mixed micelles to solubilize the curcumin. These results have important implications for the creation of more effective delivery systems for curcumin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据