4.2 Article

In silico prediction of chemical aquatic toxicity for marine crustaceans via machine learning

期刊

TOXICOLOGY RESEARCH
卷 8, 期 3, 页码 341-352

出版社

OXFORD UNIV PRESS
DOI: 10.1039/c8tx00331a

关键词

-

资金

  1. National Natural Science Foundation of China [81872800]

向作者/读者索取更多资源

Aquatic toxicity is a crucial endpoint for evaluating chemically adverse effects on ecosystems. Therefore, we developed in silico methods for the prediction of chemical aquatic toxicity in marine environment. At first, a diverse data set including different crustacean species was constructed. We then built local binary models using Mysidae data and global binary models using Mysidae, Palaemonidae, and Penaeidae data. Molecular fingerprints and descriptors were employed to represent chemical structures separately. All the models were built by six machine learning methods. The AUC (area under the receiver operating characteristic curve) values of the better local and global models were around 0.8 and 0.9 for the test sets, respectively. We also identified several chemicals with selective toxicity on different species. The analysis of selective toxicity would promote to design greener chemicals in a specific environment. Finally, to understand and interpret the models, we explored the relationships between chemical aquatic toxicity and the molecular descriptors. Our study would be helpful in gaining further insights into marine organisms, prediction of chemical aquatic toxicity and prioritization of environmental hazard assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据