4.6 Article

The fate of O2 in photocatalytic CO2 reduction on TiO2 under conditions of highest purity

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 29, 页码 15949-15957

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp07765g

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O-2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clarify the absence of O-2 in the photocatalytic gas phase CO2 reduction on TiO2. By modifying P25-TiO2 with IrOx co-catalysts it was possible to observe photocatalytic water splitting, i. e. the formation of gaseous O-2 and H-2 in almost stoichiometric amounts, without the use of sacrificial agents, while bare P25-TiO2 showed no activity in H-2 and O-2 formation under similar reaction conditions. Investigating the effect of improved H2O oxidation properties on the photocatalytic CO2 reduction revealed that the CH4 formation on P25 from CO2 was completely inhibited as long as the H2O splitting reaction proceeded. Furthermore, we found that a certain amount of O-2 is consumed under conditions of photocatalytic water oxidation. A quantification showed it to be in the same order of magnitude as the oxygen which is missing as a byproduct from photocatalytic CO2 conversion. A detailed interpretation of the results in the context of the general understanding of the photocatalytic CO2 reduction with H2O on TiO2 allows the hypothesis that P25-TiO2 undergoes a stoichiometric reaction, meaning that the CH4 formation is not based on a true catalytic cycle and runs only as long as TiO2 can consume oxygen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据