4.5 Article

Channelization of water pathway and encapsulation of DS in the SL of the TFC FO membrane as a novel approach for controlling dilutive internal concentration polarization

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ew00201d

关键词

-

资金

  1. Babol Noshirvani University of Technology [BNUT/389026/97]

向作者/读者索取更多资源

In this study, we explored the use of hydrophobic (ZIF-8) and hydrophilic (UiO-66) water-stable metal-organic-frameworks (MOFs) as well as their mixture for the fabrication of high-performance mixed-matrix membrane (MMM)-based thin film composite (TFC) forward osmosis (FO) membranes for controlling internal concentration polarization (ICP). According to the characteristic curve, the use of UiO-66 inside the support layer (SL) resulted in a negative effect on FO selectivity and positive effect on FO water permeability. Moreover, after the incorporation of ZIF-8 into the SL, the FO selectivity and FO water permeability increased and decreased, respectively. However, the incorporation of the mixture of ZIF-8 and UiO-66 (ZIF-8@UiO-66) into the SL (TFC-ZIF-UiO) caused positive effects on both FO water permeability and selectivity. Channelization and fast water transport through the UiO-66 cavities and the encapsulation of draw solution (DS) into the ZIF-8 cavities are the main reasons for increasing the water flux in the TFC-ZIF-UiO FO membrane. However, the long-time experiment showed that this phenomenon requires time. After replacing DI water with Caspian seawater, the more positive impact of using the TFC-ZIF-UiO membrane is more evident. Therefore, the strategy of using a mixture of hydrophobic and hydrophilic MOFs inside the SL of the TFC FO membranes is of great interest and potential for advancing membrane performance in water and wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据