4.8 Article

Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 27, 页码 9359-9363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b04892

关键词

-

资金

  1. CIFAR Bio-Inspired Solar Energy Program
  2. Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231, CH030201]
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  4. Natural Sciences and Engineering Research Council (NSERC) of Canada
  5. Samsung Scholarship

向作者/读者索取更多资源

Using renewable energy to recycle CO2 provides an opportunity to both reduce net CO2 emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H-2), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据